CSE 114A: Fall 2021

Foundations of Programming
Languages

Environments and closures

Owen Arden
UC Santa Cruz

Based on course materials developed by Nadia Polikarpova

Roadmap

Past weeks:

« How do we use a functional language?

Next weeks:

« How do we implement a functional language?
e ..in a functional language (of course)

WHY??

« Master the concepts of functional languages by implementing them!
« Practice problem solving using Haskell

This week: Interpreter

« How do we evaluate a program given its abstract syntax tree (AST)?
« How do we prove properties about our interpreter (e.g. that certain programs
never crash)?

The Nano Language

Features of Nano:

1. Arithmetic expressions

2. Variables and let-bindings
3. Functions

4. Recursion

Reminder: Calculator

Arithmetic expressions:
e ::=n
| e1 + e2
| e1 - e2
| e1 * e2

Example:
4 + 13
==> 17

Reminder: Calculator

Haskell datatype to represent arithmetic expressions:
data Expr = Num Int

| Add Expr Expr

| Sub Expr Expr

| Mul Expr Expr

Haskell function to evaluate an expression:

eval :: Expr -> Int

eval (Num n) =n

eval (Add el e2) = eval el + eval e2
eval (Sub el e2) eval el - eval e2
eval (Mul el e2) = eval el * eval e2

Reminder: Calculator

Alternative representation:

data Binop = Add | Sub | Mul

data Expr = Num Int -- number
| Bin Binop Expr Expr -- binary expression

Evaluator for alternative representation:

eval :: Expr -> Int

eval (Num n) =n

eval (Bin Add el e2) = eval el + eval e2
eval (Bin Sub el e2) = eval el - eval e2
eval (Bin Mul el e2) = eval el * eval e2

The Nano Language

Features of Nano:

. Arithmetic expressions [done]
. Variables and let-bindings

. Functions

. Recursion

A wWw N =

Extension: variables

Let’s add variables and let bindings!

e ::=n | x
| e1 + e2 | el - e2 | el * e2
| let x = el in e2

Example:

let x =4 + 13 in -- 17

let y =7 -5 in -- 2

X *y

==> 34

Extension: variables

Haskell representation:

data Expr = Num Int -- number
| 222 -- variable
| Bin Binop Expr Expr -- binary expression
I

??? -- Llet expression

Extension: variables

type Id = String

data Expr = Num Int -- number
| var 1d -- variable
| Bin Binop Expr Expr -- binary expression
| Let Id Expr Expr -- let expression

Haskell function to evaluate an expression:

eval :: Expr -> Int
eval (Num n) =n
eval (Var x) = ???

Extension: variables

How do we evaluate a variable?

We have to remember
which value it was bound to!

Environment

An expression is evaluated in an environment, which maps all its free
variables to values

Examples: « How should we represent the

X *y environment?

=[x:17, y:2]=> 34 « Which operations does it support?
X *y

=[x:17]=> Error: unbound variable y

x * (lety = 2 in y)
=[x:17]=> 34

Extension: variables

What does this evaluate to? *
let x = 5 in
lety = x + z in
let z = 10 in

y

O w1

O ®s

O (C) Error: unbound variable x

O (D) Error: unbound variable y

O (E) Error: unbound variable z
http:/ftiny.cc/cse116-vars-ind

Extension: variables

What does this evaluate to? *

let x = 5 in 1

let y = x + z in

let z = 10 in ﬁ

y
O ®1s

O ®s
O (C) Error: unbound variable x

O (D) Error: unbound variable y

O (E) Error: unbound variable z

http://tiny. 116-vars-gr

Environment: API

To evaluate let x = el in e2inenv:
« evaluate e2 in an extended environment env + [X:V]
« where V is the result of evaluating el

To evaluate X in env:
o lookup the most recently added binding for X

type Value = Int

data Env = ... -- representation not that important

-- | Add a new binding
add :: Id -> Value -> Env -> Env

-- | Lookup the most recently added binding
lookup :: Id -> Env -> Value

Evaluating expressions

Back to our expressions... now with environments!

data Expr = Num Int -- number
| var Id -- variable
| Bin Binop Expr Expr -- binary expression
| Let Id Expr Expr -- Llet expression

Evaluating expressions

Haskell function to evaluate an expression:

eval :: Env -> Expr -> Value
eval env (Num n) =n
eval env (Var x) = lookup x env
eval env (Bin op el e2) = f vl v2
where
vl = eval env el
v2 = eval env e2
f = case op of
Add -> (+)
Sub -> (-)
Mul -> (*)
eval env (Let x el e2) = eval env' e2
where
v = eval env el
env' = add x v env

Example evaluation

Nano expression

let x = 1 in

let y = (let x = 2 in x) + x in
let x = 3 in

X +y

is represented in Haskell as:

expl = Let "x"
(Num 1) exp2
(Let "y"
(dd exp3

(Let "x" (Num 2) (Var x))
[expa|(Var x))

(Let "x" exp5
(Num 3)

(Add (Var x) (Var y))))

Example evaluation

eval [] expl
=> eval [] (Let "x" (Num 1) exp2)
=> eval [("x",eval [] (Num 1))] exp2
=> eval [("x",1)]
(Let "y" (Add exp3 expd) exp5)
=> eval [("y",(eval [("x",1)] (Add exp3 exp4))), ("x",1)]
exp5
=> eval [("y",(eval [("x",1)] (Let "x" (Num 2) (Var "x"))
+eval [("x",1)] (Var "x"))), ("x",1)]
exp5
=> eval [("y",(eval [("x",2), ("x",1)] (Var "x") -- new binding for x
+ 1)), ("x",1)]

exp5
=> eval [("y",(2 -- use latest binding for x
+ 1)), ("x",1)]
exp5

=> eval [("y",3), ("x",1)]
(Let "x" (Num 3) (Add (Var "x") (var "y")))

Example evaluation

=> eval [("y",3), ("x",1)]
(Let "x" (Num 3) (Add (Var "x") (Var “y")))

=> eval [("x",3), ("y",3), ("x",1)] -- new binding for x
(Add (var "x") (var "y"))

= eval [("x",3), ("y",3), ("x",1)] (Var "x")

+eval [("x",3), ("y",3), ("x",1)] (var "y")

=> 3+ 3

=6

Example evaluation

Same evaluation in a simplified format (Haskell Expr terms replaced by their “pretty-
printed version”):

eval []
{let x = 1 in let y = (let x = 2 in x) + x in let x = 3 in x + y}
=> eval [x:(eval [] 1)]
{let y = (let x = 2 in x) + x in let x = 3 in x + y}
=> eval [x:1]
{let y = (let x = 2 in x) + x in let x = 3 in x + y}
=> eval [y:(eval [x:1] {(let x = 2 in x) + x}), x:1]
{let x = 3 in x + y}
=> eval [y:(eval [x:1] {let x = 2 in x} + eval [x:1] {x}), x:1]
{let x = 3 in x + y}
-- new binding for x:
=> eval [y:(eval [x:2,x:1] {x} + eval [x:1] {x}), x:1]
{let x = 3 in x + y}
- use latest binding for x:

=> eval [y:(2 + eval [x:1] {x}), x:1]
{let x = 3 in x + y}
=> eval [y:(2 + 1) , x:1]

{let x = 3 in x + y}

Example evaluation

=> eval [y:(2 + 1) , x:1]
{let x = 3 in x + y}
=> eval [y:3, x:1]
{let x = 3 in x + y}
-- new binding for x:
=> eval [x:3, y:3, x:1]
{x +y}
=> eval [x:3, y:3, x:1] x + eval [x:3, y:3, x:1] y
-- use latest binding for x:
=> 3+ 3
=>6

22
Runtime errors
Haskell function to evaluate an expression:
eval :: Env -> Expr -> Value
eval env (Num n) =n
eval env (Var x) = lookup x env -- can fail!
eval env (Bin op el e2) = f vl v2
where
vl = eval env el
v2 = eval env e2
f = case op of
Add -> (+)
Sub -> (-)
Mul -> (*)
eval env (Let x el e2) = eval env' e2
where
\Y = eval env el
env' = add x v env
How do we make sure 1ookup doesn’t cause a run-time error?
23

Free vs bound variables

Ineval env e, env must contain bindings for all free variables of e!

« an occurrence of X is free if it is not bound
« an occurrence of X is bound if it’s inside €2 where let x = el in e2
« evaluation succeeds when an expression is closed!

24

QUIZ

Which variables are free in the expression? *

let y
let x = 3 in
X +y

O (A)None

O @x

O ©y

O @)xy

(let x

= 2 in x) + x in

http:/tiny.cc/cse116-free-ind
25

QUIZ

Which variables are free in the expression? *

let y
let x = 3 in
X +Yy

O (A)None
O @«
O ©y
O o)xy

(let x

= 2 in x) + x in

http:/ftiny.cc/cse116-free-grp
26

The Nano Language

Features of Nano:

. Functions

A W N =

. Recursion

. Arithmetic expressions [done]
. Variables and let-bindings [done]

27

Extension: functions

Let’s add lambda abstraction and function application!

e ::=n | x
| e1 + e2 | el - e2 | el * e2
| let x = el in e2
| \x -> e ~-- abstraction
| e1 e2 -- application
Example:

let ¢ = 42 in
let cTimes = \x -> ¢ * x in

cTimes 2
==> 84
28
Extension: functions
Haskell representation:
data Expr = Num Int -- number
| var 1d -- variable
| Bin Binop Expr Expr -- binary expression
| Let Id Expr Expr -- let expression
| 222 -- abstraction
| 222 -- application
29

Extension: functions

Haskell representation:

data Expr = Num Int -- number
| var 1Id -- variable
| Bin Binop Expr Expr -- binary expression
| Let Id Expr Expr -- let expression
| Lam Id Expr -- abstraction
| App Expr Expr -- application

30

Extension: functions

Example:

let ¢ = 42 in

let cTimes = \x -> ¢ * x in
cTimes 2

represented as:
Let "c"
(Num 42)
(Let "cTimes"
(Lam "x" (Mul (var "c") (Var "x")))
(App (Var "cTimes") (Num 2)))

31

Extension: functions

Example:

let ¢ = 42 in

let cTimes = \x -> ¢ * x in
cTimes 2

How should we evaluate this expression?

eval []

{let ¢ = 42 in let cTimes = \x -> ¢ * x in cTimes 2}

=> eval [c:42]
{let cTimes
=> eval [cTimes:???, c:42]

What is the value of cTimes???

\X -> ¢ * x in cTimes 2}

{cTimes 2}

32

Rethinking our values

Until now: a program evaluates to an integer (or fails)

type Value = Int
type Env = [(Id, Value)]

eval :: Env -> Expr -> Value

33

Rethinking our values

What do these programs evaluate to?
(1)

\X -> 2 * x

==> ???

(2)

let f = \x ->\y -> 2 * (x +y) in
f 5

==> ???

Conceptually, (1) evaluates to itself (not exactly, see later). while (2) evaluates to
something equivalentto \y -> 2 * (5 + vy)

34

Rethinking our values

Now: a program evaluates to an integer or a lambda abstraction (or fails)

« Remember: functions are first-class values

Let’s change our definition of values!

data Value = VNum Int
| VLam ??? -- What info do we need to store?

-- Other types stay the same
type Env = [(Id, Value)]

eval :: Env -> Expr -> Value

35

Function values

How should we represent a function value?
let c = 42 in

let cTimes = \x -> ¢ * x in
cTimes 2

We need to store enough information about cTimes so that we can later evaluate
any application of cTimes (like cTimes 2)!

First attempt:
data Value = VNum Int

| vLam Id Expr -- formal + body

36

Function values

Let’s try this!

eval []
{let ¢ = 42 in let cTimes = \x -> ¢ * x in cTimes 2}
=> eval [c:42]

{let cTimes = \x -> ¢ * x in cTimes 2}
=> eval [cTimes:(\x -> c*x), c:42]
{cTimes 2}
-- evaluate the function:
=> eval [cTimes:(\x -> c*x), c:42]
{(\x -> c * x) 2}
-- evaluate the argument, bind to x, evaluate body:
=> eval [x:2, cTimes:(\x -> c*x), c:42]

{c * x}
=> 42 * 2
=> 84
Looks good... can you spot a problem?
37
What should this evaluate to? *
let ¢ = 42 in
let cTimes = \x -> ¢ * x in -- but which c???
let ¢ =5 in
cTimes 2
O wea
O @10
(O (C) Error: multiple definitions of ¢
http://tiny.cc/cse116-cscope-ind
38

QUIZ

What should this evaluate to? *

let ¢ = 42 in
let cTimes = \x -> ¢ * x in -- but which c???
let ¢ = 5 in
cTimes 2

O ~wes4
O ®10

(O (C) Error: multiple definitions of ¢

http://tiny.cc/cse116-cscope-gr

39

Static vs Dynamic Scoping

What we want:

let ¢ = 42 in

let cTimes = \x -> ¢ * x in
let ¢ = 5 in

cTimes 2

=> 84

Lexical (or static) scoping:

« each occurrence of a variable refers to the most recent binding in the
program text
« definition of each variable is unique and known statically

« good for readability and debugging: don’t have to figure out where a variable

got “assigned”

40

Static vs Dynamic Scoping

What we don’t want:

let c = 42 in

let cTimes = \x -> ¢ * x in
let ¢ = 5 in

cTimes 2

=> 10

Dynamic scoping:

« each occurrence of a variable refers to the most recent binding during
program execution

« can’t tell where a variable is defined just by looking at the function body

« nightmare for readability and debugging:

41

Static vs Dynamic Scoping

Dynamic scoping:

« each occurrence of a variable refers to the most recent binding during
program execution

« can’t tell where a variable is defined just by looking at the function body

« nightmare for readability and debugging:

let cTimes = \x -> ¢ * x in
let ¢ = 5 in

let resl = cTimes 2 in -- ==> 10
let ¢ = 10 in
let res2 = cTimes 2 in -- ==> 29!!!

res2 - resl

42

Function values

data Value = VNum Int
| VLam Id Expr -- formal + body

This representation can only implement dynamic scoping!

let c = 42 in
let cTimes = \x -> ¢ * x in
let c = 5 in
cTimes 2
evaluates as:
eval []

{let ¢ = 42 in let cTimes = \x -> ¢ * x in let ¢ = 5 in cTimes 2}

Function values

eval []
{let c = 42 in let cTimes = \x -> ¢ * x in let c =
=> eval [c:42]

[V

in cTimes 2}

ul

{let cTimes = \x -> ¢ * x in let c =
=> eval [cTimes:(\x -> c*x), c:42]

in cTimes 2}

[
[V

{let ¢ in cTimes 2}
=> eval [c:5, cTimes:(\x -> c*x), c:42]
{cTimes 2}
=> eval [c:5, cTimes:(\x -> c*x), c:42]
{(\x -> ¢ * x) 2}
=> eval [x:2, c:5, cTimes:(\x -> c*x), c:42]

{c * x}
-- latest binding for c is 5!
=> 5% 2
=> 10

Lesson learned: need to remember what ¢ was bound to when cTimes was
defined!

« i.e. “freeze” the environment at function definition

Closures

To implement lexical scoping, we will represent function values as closures

Closure = lambda abstraction (formal + body) + environment at function definition

data Value = VNum Int
| VvClos Env Id Expr -- env + formal + body

Closures

Our example:

eval []
{let ¢ = 42 in let cTimes = \x -> ¢ * x in let c = 5 in cTimes 2}
=> eval [c:42]
{let cTimes = \x -> ¢ * x in let ¢ = 5 in cTimes 2}
-- remember current env:
=> eval [cTimes:<[c:42], \x -> c*x>, c:42]
{let ¢ = 5 in cTimes 2}
=> eval [c:5, cTimes:<[c:42], \x -> c*x>, c:42]
{cTimes 2}
=> eval [c:5, cTimes:<[c:42], \x -> c*x>, c:42]
{<[c:42], \x -> c * x> 2}
-- restore env to the one inside the closure, then bind 2 to x:
=> eval [x:2, c:42]

{c * x}
N 42 * 2
=> 84

46

QUIZ

Which variables should be saved in the closure environment
of f2*

let a = 20 in
let f =
\x -> let y
let g
a+gx
in ...
O wa
O ®ax

r
O ©yg E

O @ayg

I
bes
+
=
e
3

I
~
N
1
v
<
+
N
('R
=
-

O ®axyaz http://tiny.cc/cse116-env-ind

47

QUIZ

Which variables should be saved in the closure environment
of f2*

let a = 20 in
let f =
\x -> let y
let g
a+g
in ...
O wa
O ®ax

O ©yg

x

O @ ayg
O ®axygz

http://tiny.cc/cse116-env-grp

48

Free vs bound variables

« An occurrence of X is free if it is not bound
« An occurrence of X is bound if it’s inside
o e2wherelet x = el in e2
o ewhere\x -> e
« Aclosure environment has to save all free variables of a function definition!

let a = 20 in

let f =
\Xx -> lety =x+ 1 in
let g = \z ->y + z in
a+ gXx --a is the only free variable!
in ...

49
Evaluator
Let’s modify our evaluator to handle functions!
data Value = VNum Int
| VClos Env Id Expr -- env + formal + body
eval :: Env -> Expr -> Value
eval env (Num n) = VNum n -- must wrap in VNum now!
eval env (Var x) = lookup x env
eval env (Bin op el e2) = VNum (f v1 v2)
where

(VNum v1) = eval env el

(VNum v2) = eval env e2

f = ... -- as before
eval env (Let x el e2) = eval env' e2

where

v = eval env el

env' = add x v env
eval env (Lam x body) = ??? -- construct a closure
eval env (App fun arg) = ??? -- eval fun, then arg, then apply

50

Evaluator

Evaluating functions:

« Construct a closure: save environment at function definition

« Apply a closure: restore saved environment, add formal, evaluate the body
eval :: Env -> Expr -> Value

eval env (Lam x body) = VClos env x body
eval env (App fun arg) = eval bodyEnv body

where
(VClos closEnv x body) = eval env fun -- eval function to closure
VArg = eval env arg -- eval argument
bodyEnv = add x vArg closEnv

51

Evaluator

Evaluating functions:

« Construct a closure: save environment at function definition
« Apply a closure: restore saved environment, add formal, evaluate the body

eval :: Env -> Expr -> Value

eval env (Lam x body) = VClos env x body

eval env (App fun arg) =
let vArg = eval env arg in -- eval argument
let (VClos closEnv x body) = (eval env fun) in
let bodyEnv = add x vArg closEnv in
eval bodyEnv body

52
With eval as defined above, what does this evaluate to? *
let f = \x -> x +y in
let y = 10 in
f 5
O ®1s
O ®s
O (C)Error: unbound variable x
O (D) Error: unbound variable y
O (& Error: unbound variable f http://tiny.cc/cse116-enveval-ind
53

Quiz

With eval as defined above, what does this evaluate to? *

let £ = \x -> x +y in
let y = 10 in

f 5

O w1s

O ®s

O (C) Error: unbound variable x

O (D) Error: unbound variable y

E) Error: unbound variable f
O (8 Error: unbound variable http://tiny.cc/cse116-enveval-grp

54

Evaluator

eval []
{let f = \x -> x + y in let y = 10 in f 5}
=> eval [f:<[], \x -> x + y>]
{let y = 10 in f 5}
=> eval [y:10, f:<[], \x -> x + y>]
{f 5}
=> eval [y:10, f:<[], \x -> x + y>]
{<[1, \x -> x + y> 5}
=> eval [x:5] -- env got replaced by closure env + formal!

{x + y} --y 1is unbound!

55
Quiz
With eval as defined above, what does this evaluate to? *
let f =\n->n*+f (n - 1) in
f 5
O »120
(O (B) Evaluation does not terminate
O (C) Error: unbound variable f
re
http://tiny.cc/cse116-enveval2-ind
56

Quiz
With eval as defined above, what does this evaluate to? *
let f=\n->n*Ff (n - 1) in
f 5
O ()120

(O (B) Evaluation does not terminate

O (C) Error: unbound variable f

http://tiny.cc/cse116-enveval2-grp

57

Evaluator

eval []
{let f =\n->n*Ff (n - 1) in f 5}
=> eval [f:<[], \n -> n * £ (n - 1)>]
{f 5}
=> eval [f: <[], \n ->n * f (n - 1)>]
{<[1, \n ->n * f (n - 1)> 5}
=> eval [n:5] -- env got replaced by closure env + formal!
{n*f (n - 1)} -- f is unbound!

Lesson learned: to support recursion, we need a different way of constructing the
closure environment!

58

